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Asymptotic behavior of the solution of the two-dimensional stochastic vorticity equation
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Asymptotic properties of the solution of the vorticity equation for two-dimensional randomly stirred fluid
with long-range correlations of the driving force are analyzed with the aid of field-theoretic renormalization
group methods. Renormalization due to the force fluctuations is shown to lead to drastic changes in the relative
contribution of microscale viscosity and macroscale friction to the energy and enstrophy dissipation.
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I. INTRODUCTION

Since the late 1970s renormalization-group methods h
been widely applied to the investigation of fully develop
three-dimensional turbulence@1–3#. In this approach the sto
chastically forced Navier-Stokes equation has been used
powerlike falloff in the space of the correlations of the ra
dom forcing. Scaling exponents and amplitude coefficie
describing the asymptotic behavior of various physical qu
tities have been calculated in an« expansion~see, e.g., the
recent review@4#!. The expansion parameter«522l is the
deviation of the power of wave numberl in the correlation
function of the random force from the critical valuelc52, at
which the coupling constant of the corresponding fie
theory is dimensionless.

In these calculations the value of the expansion param
« has been chosen such that the only dimensional param
of the model are the viscosity and the energy pumping r

From the renormalization-group equations it then follo
that the asymptotic behavior of the model at large spa
scales is independent of the viscosity, and the power
wave-number dependence of the equal-time velocity-velo
correlation function is exactly that predicted by the Kolmo
orov scaling law@5#. Therefore, the renormalization-grou
approach yields a mean-field description of turbulence w
built-in Kolmogorov scaling, in which the« expansion may
be constructed, e.g., for the structure functions.

In the renormalization-group approach most work h
been carried out in three dimensions. Only recently this
proach has been applied to the analysis of two-dimensio
turbulence@6,7#. There are both physical and technical re
sons for this. In two-dimensional turbulence at the scales
the stirring length coherent vortex structures are crea
which inhibit formation of self-similar structures. Howeve
experimental data on atmospheric turbulence@8#, and recent
numerical simulations@9# indicate that in two-dimensiona
turbulence there may occur two scaling regimes correspo
ing to the inverse energy cascade towards small wave n
bers and the enstrophy cascade towards large wave num

The existence of these two scaling regimes is in acc
with the prediction of Kraichnan@10#. It should be noted,
however, that the energy~enstrophy! pumping leading to a
steady state with the two scaling regimes may be realize
two different ways. In numerical simulations@9# and some
experiments@11# the energy~enstrophy! pumping takes place
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on scales in between the inverse energy cascade and th
strophy cascade. In the atmospheric turbulence@8# the en-
ergy and enstrophy sources are at the outer edges of
scaling intervals, and it is not clear whether there is an
ergy and enstrophy sink between them@8# or they coexist
@9#. In both cases the Kolmogorov spectrum of the inve
energy cascadeE(k)}k25/3 for k!kI is observed experi-
mentally and in the simulations~with the exception@12#! for
wave numbers smaller than the inverse length scale of
energy pumpingkI}1/l I . However, in the numerical simu
lations@9# in the enstrophy inertial rangek@kI the falloff of
the energy spectrum seems to be steeper thanE(k)}k23,
predicted by dimensional arguments@10#.

From the technical point of view it is not possible to u
the renormalizedd-dimensional model at two dimensions b
simply puttingd52 in the results@2#. The reason is that in
the two-dimensional case there is an additional class of
vergent graphs, which have to be included in the renorm
ization procedure. The account of the contribution of the
divergent graphs has led to significant confusion@6,13,14#.
In particular, an incorrect renormalization of the tw
dimensional stochastic vorticity equation has led to fa
conclusions about the asymptotic behavior of the solution
this equation@6#.

The source of this confusion can be explained as follo
The correlation function of the random force, which is us
ally used in the description of turbulence, in the wav
number space is}k42d(k21m2)2« @1,15#, wherem is the
small wave-number cutoff. For the« expansion the cutoff
parameter may be, and often has been, chosenm50. How-
ever, for finite« a careful analysis of the limitm→0 in this
expansion is required. For arbitrary reald and «, k42d(k2

1m2)2« is a singular function ofk2 at the origin in the limit
m→0, which corresponds to long-range correlated rand
force. At two dimensions the correlation function is reno
malized by counterterms}k2, which correspond to loca
correlations in the coordinate space. The renormalizatio
carried out in the logarithmic model, in which«50. In two
dimensions the original correlation function cannot be dist
guished from the local counterterms}k2, and it is not obvi-
ous how the model should be renormalized. In particular
prescribe the local in space counterterms to renormaliza
of the nonlocal~in the limit m→0) correlation function
@6,13# is not a consistent way to renormalize the model.

Recently, a renormalization procedure has been put
4532 © 1998 The American Physical Society
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ward @16#, in which the renormalization of the correlatio
function of the random force has been carried out in a c
sistent manner ford-dimensional turbulence near two dime
sions. In the present two-dimensional case the argume
the following. In order to deal with finite quantities, th
model must be regularized. To this end the analytic regu
ization with the parameter« must be used, otherwise there
no way to distinguish between the original correlation fun
tion }k222«(11m2/k2)2« and the local counterterms}k2.
The renormalization is most conveniently carried out
multiplicative renormalization. In order to make the mod
multiplicatively renormalizable the local term}k2 is added
to the force correlation function at the outset. Only this te
is then renormalized, whereas the nonlocal term is left int
contrary to the earlier treatment of thed-dimensional model
near two dimensions@6,13,14#.

In the present paper this renormalization procedure is
plied to the solution of the two-dimensional stochastic v
ticity equation. The stochastic problem and the subsequ
field theory are used in the form specific of two-dimensio
turbulence, i.e., the starting point is the stochastic vortic
equation for the stream functionc instead of the Navier-
Stokes equation for the two-dimensional solenoidal veloc
field v5(ez3¹)c.

The paper is organized as follows. In Sec. II the corr
renormalization of the field theory corresponding to the s
chastic vorticity equation is carried out and the renormali
tion constants calculated at one-loop order. In Sec. III
renormalization-group equations are set up and fixed po
found. In Sec. IV the asymptotic energy spectrum is cal
lated for the energy and enstrophy inertial ranges. Sectio
is devoted to a discussion and concluding remarks. Detai
the calculation of the renormalization constants are prese
in the Appendix.

II. RENORMALIZATION OF THE SOLUTION
OF THE STOCHASTIC VORTICITY EQUATION

Consider the stochastic Navier-Stokes equation for
flow of homogeneous incompressible fluid, which for t
transverse components of the velocity field assumes the f

] tv i1Pi j v l] lv j5n0¹2v i2j0v i1 f i , ] iv i50. ~1!

Herev i(t,x) are the coordinates of the divergenceless vel
ity field, n0 is the kinematic viscosity,j0 is the coefficient of
friction, and Pi j is the transverse projection operator (Pi j
5d i j 2kikj /k2 in the wave-number space!, and f i are the
coordinates of the random force. Here and henceforth, s
mation over repeated indices is implied. The drag term
added to the Navier-Stokes equation because in experim
realizations and simulations of a two-dimensional turbul
flow energy is consumed not only by microscale dissipati
but also by the friction at the boundaries of the fluid lay
The drag force makes it possible to maintain a station
state with the anticipated inverse energy cascade tow
small wave numbers and the enstrophy~squared vorticity!
cascade towards large wave numbers.

In the applications of the stochastic Navier-Stokes eq
tion ~1! to turbulence the random force is assumed to hav
Gaussian distribution with zero mean and the correlat
function in the wave-vector space@1–3# of the form
-
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^ f i~ t,k! f j~ t8,k8!&5Pi j d~k1k8!d~ t2t8!D̄~k!. ~2!

Here,

D̄~k!5g0n0
3 k42d

~k21m2!22l
, ~3!

andl is an arbitrary parameter.
The force correlation function is related to two bas

physical quantities, the energy pumping rateE and the en-
strophy pumping rateB as

E5
d21

2 E dk

~2p!d
D̄~k!, B5

d21

2 E dk

~2p!d
k2D̄~k!

~4!

in d dimensions, which allows one to connect the ‘‘couplin
constant’’ g0 with the pumping rate in the correspondin
asymptotic region.

The correlation function~3! is chosen to be locally inte
grable ~due to the IR cutoffm2) and to have a powerlike
falloff characterized by the exponentl in the wave-vector
space. The large wave-number behavior is essential for c
sistent renormalization, whereas the small wave-number
havior follows the three-dimensional tradition@1#. When the
particular function~3! is used, an additional UV cutoffL is
required for large enough values of the exponentl. The
value of the falloff exponent determines whether the ene
~enstrophy! pumping is concentrated at large or small wa
numbers. The ‘‘physical’’ value of the falloff exponent i
determined by the condition that the energy~enstrophy!
spectrum in the inertial range is independent of the cu
parameters in the wave-vector space.

In the two-dimensional case it is customary to express
velocity field using the stream functionc defined by the
relation v i5e i j ] jc, wheree i j is the second-rank antisym
metric tensor with the usual normalizatione1251. In two
dimensions the vorticityv5¹3v is related to the stream
function asv5e i j ] iv j52¹2c.

Two-dimensional curl of the Navier-Stokes equation~1!
yields the vorticity equation. When the velocity is express
in terms of the stream function the vorticity equation a
sumes the form

] t¹
2c1] i]m~emn]nc] ic!5n0¹4c2j0¹2c1 f , ~5!

where f 52e i j ] i f j . The correlation function of the random
force here is

^ f ~ t,k! f ~ t8,k8!&5d~k1k8!d~ t2t8!D~k!, ~6!

where

D~k!5g0n0
3 k4

~k21m2!22l
, ~7!

It should be noted that the~nonstochastic! vorticity equation
~5! is Galilei invariant, whereas the two-dimensional Navie
Stokes equation with the drag term~1! is not.

The stochastic problem~5!, ~6! may be cast@1,2# in a field
theory with the ‘‘action’’
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S5 1
2 c8Dc81c8

3@2] t¹
2c1n0¹4c2] i]m~emn]nc] ic!2j0¹2c#.

~8!

Here, all the necessary integrals and sums are implied.
convenient to assign canonical scaling dimensions to the
rameters of the action~8! separately with respect to wav
number (dk) and frequency (dv) variables with the conven
tion dk

k52dx
k51, dv

v52dt
v51. The total dimension of a

parameterP is defined asdP5dP
k 12dP

v . The canonical di-
mensions are determined from the condition that the ac
~8! is scale invariant with respect to spatial coordinates
time separately. Thus,

dc
k 522, dc

v51, dc50;

dc8
k

52, dc8
v

521, dc850;

dn0

k 522, dn0

v 51, dn0
50; ~9!

dj0

k 50, dj0

v 51, dj0
52;

dg0

k 5422l, dg0

v 50, dg0
5422l.

The theory is logarithmic, i.e.,dg0
50, whenl52.

Power counting in the graphs shows that the logarithm
model is renormalizable in spite of the vanishing scal
dimensions of the fields. Due to the definition of the stre
function, there are enough factorizing external wave vec
at the interaction vertex to keep the model renormalizabl
linear wave vector for eachc argument and a quadratic i
the wave-vector coordinates term for eachc8 argument of
one-particle-irreducible~1PI! Green functions. Due to this
when the model is logarithmic (l52), the real degree o
divergence of a 1PI Green function isd8542n22n8,
wheren andn8 are the numbers of thec andc8 arguments,
respectively.

As a consequence of the Galilei invariance of the act
~8!, the 1PI Green functionGccc8 , which is superficially
divergent by power counting, is actually convergent, as
the Navier-Stokes problem@1,17#. Therefore, only the graph
of the 1PI Green functionsGcc8 and Gc8c8 yield divergent
contributions to the renormalization of the model.

It should be borne in mind that the renormalization
dealing with the UV divergences of the model. The ren
malized model exhibits scale-invariant behavior in the lim
governed by a stable fixed point of the renormalizat
group. In the present case there is an IR stable fixed po
which yields the self-similar behavior of the model in th
limit of small wave numbers.

If the resulting renormalized model is finite in the lim
m→0, then the self-similar behavior of the model is given
the solution of the renormalization-group equations. This
always the case in« expansion. For finite« additional analy-
sis of the limit m→0 is required, which is not simple. De
tailed discussion of these problems is deferred to Sec. IV

The divergences brought about byGcc8 may be absorbed
in the renormalization of the parametern0 . The coefficient
of friction j0 is not renormalized at all due to the factorizin
is
a-

n
d

c

rs
a

n

n

-
t

t,

s

derivatives at the interaction vertex: in the graphs ofGcc8
cubic polynomials in the coordinates of the wave-vectork
factorize, therefore the counterterms are}k4.

Divergent terms are polynomial functions of the wa
numbers in the regularized model@18#. However, in the bare
Green functionGc8c80(v,k)5g0n0

3k4(k21m2)l22 there is
no such term to be renormalized by the divergent contri
tions of Gc8c8 . The reason is that in order to keep track
the long-range correlation function an analytic regularizat
must be used, e.g., with the parameter«522l, which is
used here. Note that the difference between long-range
short-range correlations of the random field is meaning
only in the limit of vanishing inverse correlation lengthm
→0. To keep the model multiplicatively renormalizable,
regular}k4 term must be added to the correlation function
the outset. Hence, in the correlation function~6! the term
D(k)5g0n0

3k4(k21m2)l22 is replaced by the sum

D~k!5g0n0
3 k4

~k21m2!22l
1a0n0

3k4 ~10!

with a new parametera0 .
The divergences ofGc8c8 give rise to the renormalization

of the parametera0n0
3 , whereas the parameterg0n0

3 remains
unchanged. The canonical scaling dimensions of the par
etera0 areda0

k 5da0

v 5da0
50. As a result, the renormalize

action may be written as

SR5 1
2 gn3M2«¹2c8~2¹21m2!l22¹2c8

1 1
2 Z1an3¹2c8¹2c81c8@2] t¹

2c1Znn¹4c

2] i]m~emn]nc] ic!2j0¹2c#, ~11!

whereM is the renormalization mass, and the renormaliz
parameters are defined by

n05Znn,

a05aZa5aZ1Zn
23 ,

g05M2«gZg .

As usual, the renormalized coupling constantsg and a are
chosen to be both spatially and temporally dimensionle
The nonlocal term of the action~11! is not renormalized,
therefore the renormalization constantsZg andZn are related
as

Zg5Zn
23 , ~12!

up to a finite renormalization. In the minimal subtractio
scheme@18# used here, the relation~12! holds as it stands.

In the minimal subtraction scheme only the singular co
tributions of the graphs to the renormalization constants
retained. In general, the renormalization constants are de
mined up to a finite renormalization, which may be used
relate the parameters of the model to observables at s
reference scale. Here, a natural choice would be

1

24

]4

]k4
Wcc8R

21
~v,k!uv5M2n

k5M
52n0 , ~13!
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where Wcc8R is the renormalized complete~dressed! re-
sponse function of the stream function, andn0 is the viscos-
ity at the reference wave numberM . The normalization~13!
implies that at wave numbers of the order ofM the nonlinear
terms are negligible.

The choice of renormalization scheme does not affect
scaling exponents, but it may change the scaling functio
However, in the« expansion any renormalization prescri
tion different from the minimal subtraction scheme chang
the coefficient and scaling functions by terms that are
higher than the leading order in the« expansion. In the
present work the correlation functions and spectra are ca
lated at the leading order of the« expansion, which is
uniquely given by the minimal subtraction procedure.

Due to the addition of the parametera the regularization
prescription had to be changed. Practically the most con
nient way to introduce an ultraviolet cutoff turned out to be
kind of Pauli-Villars regularization by the substitution

an3k4→an3k4
L2

L21k2
.

This implies that the renormalized model is obtained as
double limit of the regularized model, when«→0 and L
→`. The result depends on the order of passing to the lim
but this ambiguity is no more dangerous than that relate
finite renormalization, and thus does not affect t
asymptotic behavior of the model.

For the divergent parts of the renormalization constant
the one-loop level I obtain

Z1512
1

64p5 g2

2«a
1gF 2

«
,

2 ln
L2

M2
G1a ln

L2

M26 ,

~14!

Zn512
1

64pFg

«
1a ln

L2

M2G .

Here, the upper expression forZ1 corresponds to the limit in
which first L→` and then«→0, and the lower expressio
to the reversed order of passing to the limits.

III. RENORMALIZATION-GROUP EQUATIONS
AND FIXED POINTS

From the connection between the renormalized and
renormalized equal-time autocorrelation functions of
stream functionc

WccR
st ~g,a,n,M !5Wcc

st ~g0 ,a0 ,n0!

the usual basic renormalization-group equation follows:

@DM1bg]g1ba]a2gnDn#WccR
st 50, ~15!

where

g i5D̃M ln Zi , i 5a,g,n,
e
s.

s
f

u-

e-

e

t,
to

at

n-
e

bg5D̃Mg5g~22«2gg!, ~16!

ba5D̃Ma52aga ,

and

D̃M5M]Mu0 ,

DM5M]M , ~17!

Dn5n]n .

In D̃M the partial derivative with respect toM is calculated
with fixed bare parameters~subscript 0), whereas inDM the
renormalized parameters~without subscript! are kept fixed.

The relation~12! together with the definitions~17! leads
to the connection@1#

gg523gn . ~18!

It is convenient to extract the functionR of dimensionless
argumentsa, g, and

s52 ln
k

M
, z5

j0

M2n
, u5

m

k

from the correlation functionWccR
st :

WccR
st ~k,g,a,n,j0 ,m,M !

5 1
2 gn2M2«k2222«R~e2s,g,a,z,u!. ~19!

Substitution of this representation in the basic equation~15!
leads to the following Callan-Symanzik equation for t
function R:

@]s2~22gn!Dz1bg]g1ba]a1gn#R~e2s,g,a,z,u!50.

The solution of this first-order partial differential equatio
may be written in the form

R~e2s,g,a,z,u!5e22*0
sgndsR~1,ḡ,ā,z̄,u!, ~20!

whereḡ, ā are the solutions of the equations

E
g

ḡdg

bg
52s, E

a

āda

ba
52s, ~21!

and

z̄5ze*0
s
~22gn!ds. ~22!

Due to the connection~18! the exponential scaling factors i
Eqs.~20! and~22! may be expressed in terms of the runni
coupling constantsā, ḡ @15#, and

WccR
st ~k,g,a,n,j0 ,m,M !

5 1
2 ḡ1/3g2/3n2k2~214«/3!M4«/3R

3F1,ḡ,ā,zS k

M D 2~222«/3!S ḡ

g
D 1/3

,uG . ~23!
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It is convenient to rewrite this relation in terms of the u
renormalized~physical! parameters:

WccR
st ~k,g,a,n,j0 ,m,M !

5 1
2 ḡ1/3g0

2/3n0
2k2~214«/3!RF1,ḡ,ā,

ḡ1/3j0

g0
1/3n0

k2~222«/3!,uG .

~24!

One-loop calculation yields the following expressions for t
b functions~16!:

bg5g8~22«13a813g8!,
~25!

ba52g821g8a812a82,

where

a85
a

32p
, g85

g

32p
.

These b functions are exactly the same as those of
d-dimensional Navier-Stokes equation at two dimensio
@16#. Thus, it seems that from the point of view of the reno
malization group, the results of thed-dimensional model in
the two-parameter expansion@16# may be applied directly to
the two-dimensional case.

The fixed points are determined by the system of eq
tions bg5ba50. From the solution of the equations~21!
near a fixed point it follows that the fixed point is infrare
stable, when the matrixvnm5]nbm is positively definite at
the fixed point. The trivial fixed pointg

*
8 5a

*
8 50 is infrared

stable only if «,0. For «.0, the trivial fixed point is a
saddle point of the solution of Eq.~21!.

The anomalous asymptotic behavior of the model at sm
wave numbers is governed by the nontrivial fixed point

g
*
8 5 4

9 «, a
*
8 5 2

9 « ~26!

at which the eigenvalues of the stability matrix are

v1,25
2
3 ~26 iA2!«. ~27!

The real parts of both eigenvalues are positive, when«.0
and this inequality determines the region of stability of th
fixed point. Since the eigenvalues of thev matrix are com-
plex conjugate, the fixed point is an infrared-stable foc
The anomalous dimensiongn* is related to the parameter« in
the usual manner@1,2# gn* 52«/3.

In the basin of attraction of an infrared-stable fixed po
the running coupling constants approach the fixed-point
ues ḡ→g* , ā→a* in the large-scale limit, whens→`.
However, the parameterz grows in this limit, as seen from
Eq. ~22!, and there are two separate asymptotic limits cor
sponding to wave-number scales much greater or m
smaller than the borderline wave number

kb5F j0
3

n0
3

g*
g0

G 1/~622«!

, «Þ3, ~28!
e
s
-

-

ll

.

t
l-

-
h

at which both dissipative terms in the renormalized solut
of the vorticity equation are of the same order of magnitu
In the former limit dissipation due to drag is small, in th
latter dissipation due to microscale viscosity is small.

IV. ASYMPTOTIC ENERGY SPECTRUM

From the solution~24! the asymptotic expression

WccR
st ~k,g,a,n,j0 ,m,M !

5 1
2 g

*
1/3g0

2/3n0
2k2~214«/3!RF1,g* ,a* ,S kb

k D 222«/3

,
m

k G ~29!

follows, when k→0. Here,g* , a* are the values of the
coupling constantsg, a at the infrared-stable fixed poin
~26!, respectively.

The energy pumping rateE is related to the correlation
function of the random fieldf in the following fashion:

E5
1

2E dk

~2p!2

D~k!

k2
. ~30!

For the correlation function~10! of the properly renormal-
ized model it can readily be seen that forl.0 («,2), the
energy pumping corresponding to the first term is conc
trated at large wave numbers, as required for the assu
steady inverse energy cascade. The energy pumping du
the second term is always concentrated at large wave n
bers. In contrast with the three-dimensional case, the inv
stirring lengthkI serves as the upper cutoff for the inver
energy cascade. The choice of the lower cutoffm is different
for the anticipated two scaling patterns.

When both the energy source and the enstrophy so
are in the middle of the wave-number interval, as in m
numerical simulations, dissipation scales are necessa
widely separated. The drag is responsible for the energy
sipation at low wave numbers and the microscale visco
for the enstrophy dissipation at high wave numbers. On
other hand, when the sources are separated in the w
number scale, as in atmospheric turbulence, dissipation
to both mechanisms is possible at wave numbers in betw

Therefore, when the energy source is at the upper en
the wave-number interval (kI

e) and the enstrophy source a
the lower end (kI

b), I choose the borderline wave numb
kb5(g* j0

3/g0n0
3)1/(622«) as the lower cutoffm for the en-

ergy inertial range~and as the upper cutoff for the enstroph
inertial range!. The self-similar enstrophy cascade is e
pected to take place forkI

b!k!kb and the inverse energ
cascade forkb!k!kI

a .
When the pumping of energy and enstrophy takes plac

the middle of the wave-number interval (kI) the natural
choice for the upper cutoff of the enstrophy inertial range
the wave number of microscale dissipationkB5B 1/6n0

21/2

and for the lower cutoff of the energy inertial range the wa
number of drag dissipationkj5E21/2j0

3/2.
The parametersg0 , a0 of the model may be related to th

energy pumping rateE in a manner similar to that used in th
three-dimensional case@15#. For the correlation function~10!
I obtain from Eq.~30! the relation
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E5
a0n0

3

16p
L41

g0n0
3

8p
L2~22«!

1

22«F S 11
m2

L2D 22«

2
22«

12«

m2

L2S 11
m2

L2D 12«

1
1

12«S m2

L2D 22«G , ~31!

whereL is the upper cutoff parameter.
The coupling constantg0 as a function of the energ

pumping rate and cutoff parameters is substituted from
relation ~31! in the asymptotic expression~29!. The expo-
nents in the power functions in Eq.~29! are exact in the«
expansion, but the« expansion of the scaling functionR is
not simple. The one-loop calculation of the renormalizatio
group functions performed here allows one to find the sc
ing function at the leading order in the« expansion. There-
fore, only the leading order term of the coefficient of t
power functionL2(22«) in Eq. ~31! may be consistently use
when substitutingg0 from Eq. ~31! in Eq. ~29!. At this ac-
curacy the relation betweenE andg0 is

E5
g0n0

3

16p
L2~22«!@11O~«!#1

a0n0
3

16p
L4. ~32!

On the other hand, the connection between the stream f
tion autocorrelation function and the energy spectrumE(k),
defined by the relation̂v2(x)&52*0

`E(k)dk, is

E~k!5
k3

4p
WccR

st ~k!. ~33!

According to the asymptotic expression~29!, this yields

E~k!5g
*
1/3g0

2/3n0
2 k124«/3

8p
RF1,g* ,a* ,S kb

k D 222«/3

,
m

k G .
~34!

The right-hand side of Eq.~34! depends on several param
eters, the values of which may be chosen to yield the
pected universal scaling behavior in the inertial range. T
spectrum~34! should be independent of the details of t
energy pumping, i.e., independent of the upper cutoffL in
the intervalm!k!L. According to the relation~32!, this
goal is achieved by the choicea050 and «52, as in the
three-dimensional case. It should be borne in mind that
bare coupling constanta0 is actually a book-keeping param
eter reflecting the necessity of the introduction of the sh
range term in the correlation function of the random forc

The spectrum~34! remains still dependent on the borde
line wave numberkb and the small wave number cutoff pa
rameterm. In the case of separated sourcesm5kb , and it is
sufficient to putkb50 to obtain completely scale-invarian
energy spectrum. From the definition~28! for «52 it follows
that

kb5F j0
3

n0
3

g*
g0

G 1/2

. ~35!

Therefore, to putkb50 is tantamount to puttingj050.
In the case of separated sinks the cutoff parametem

5kj and the relation of the two parameterskj andkb must
e

-
l-

c-

x-
e

e

t-

be established. To this end, the expression~32! is substituted
for g0n0

3 in Eq. ~35!. When the choicea050 and the defini-
tion kj5E21/2j0

3/2 are taken into account, it follows from
Eqs. ~32! and ~35! that kb5(g* /16p)1/2kj . Thus, both pa-
rameters are proportional toj0

3/2. Therefore, the completely
scale-invariant energy spectrum may be obtained by put
j050 also in the case of separated sinks.

Physically, the fact thatm5kj}kb leads to the somewha
unexpected conclusion that dissipation due to microscale
cosity is the dominant factor in dissipation in the~inverse!
energy cascade; at the lower end of the energy inertial ra
dissipation due to microscale viscosity is of the same or
of magnitude as dissipation due to drag. This effect
brought about by the renormalization, for in the unrenorm
ized vorticity equation both dissipative terms are of the sa
order of magnitude at wave numbers of the order

k0b5S j0

n0
D 1/2

5Re1/2kj@kj , ~36!

since the Reynolds number of the energy inertial range
5E/j0

2n0 is large in the asymptotic regime.
Thus, the choicej050 renders the spectrum~34! com-

pletely scale invariant with the Kolmogorov exponents:E
}E 2/3k25/3. The coefficient may be calculated in the« ex-
pansion. At the leading order the spectrum

E~k!524/331/3E 2/3k25/3 ~37!

follows, in which the only parameter is the energy pumpi
rate E. The Kolmogorov constantC in the scaling law
E(k)5CE 2/3k25/3 is obtained in the leading order of the«
expansion from Eq.~37! asC524/331/353.634. This is less
than the closure model predictionC56.69@10#. Most results
of numerical simulations, which vary fromC52.9 @19# to
C;14 @20#, also exceed the value obtained here. Experim
tal results@11# yield the range 3,C,7.

The asymptotic behavior

E~k!52~3«!1/3E 2/3k124«/3kI
4~«22!/3 ,

resulting from Eq.~34! for a050, j050, is well justified in
the « expansion, in which it is safe to put the coefficient
friction j050 and obtain a scaling regime independent ofj0
with pure power-law dependence on the wave number.
reason is that in the framework of perturbation theory,
scaling functionR may be constructed in the form of an«
expansion at the fixed point of the RG:

R~1,g* ,a* ,z!5 (
n50

`

«nRn~z!.

Inspection of the wave number and frequency integrals g
ing rise to this expansion reveals that the coefficientsRn(z)
are only weakly singular functions of the effective sm
wave-number cutoffz}j0 : they remain finite in the limitz
→0, but contain singular terms of the typez ln z.

For finite «, however, it is not obvious that the sel
similar behavior does not depend onj0 and that the expo-
nents of the powerlike asymptotics are those of Eq.~37!,
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because for finite« in the perturbation expansion there a
always terms divergent in the limitj0→0.

A similar problem arises in the three-dimensional case
has been thoroughly analyzed@15,21# with the aid of
operator-product expansion. The operator-product expan
~fusion rule! of the productc(t1 ,x1)c(t2 ,x2) of renormal-
ized fields is an asymptotic expansion of the form

c~ t1 ,x1!c~ t2 ,x2!5(
n

Cn~t,r !FnR~ t,x! ~38!

valid in the correlation functions of the model. Here,t5t1
2t2→0, r5x12x2→0, t5(t11t2)/2, andx5(x11x2)/2. In
Eq. ~38! FnR are scale-invariant linear combinations
renormalized composite operators, i.e., polynomial functi
of the fieldsc andc8 and their derivatives. The coefficien
functions Cn are finite in the limit ofm→0, therefore the
behavior of the sum in the limitm→0 is determined by the
scaling behavior of the composite operators.

Fusion rules such as Eq.~38! have been proved to hold fo
relativistic field theories~see, e.g., Ref.@18#!, and are gener-
ally assumed to be true also in the case of first-order fi
theories. It has been shown@15,21# that asymptotic expres
sions obtained in the« expansion for three-dimensional st
chastic Navier-Stokes equation@1,2# are consistent for finite
0,«,2 in the limit m→0. This analysis involves calcula
tion of anomalous dimensions of composite field operat
with lowest canonical scaling dimensions with the sub
quent resummation of those of them, which have nega
total scaling dimensions@15#.

This is a formidable task in three dimensions, and in t
dimensions it becomes even worse, since the canonica
mensions of the stream function fieldc and the auxiliary
field c8 are equal, which leads to proliferation of releva
composite operators@16#. However, in the operator-produc
expansion of equal-time correlation functions of the stre
function c there are no composite operators involving t
auxiliary field c8. This can be seen by inspection of th
graphs of the perturbation expansion, in which the equ
time correlation functions with thec8 field always contain
closed loops of the retardedc8c propagator of the mode
and thus vanish. Since the analysis of Refs.@15,21# is inde-
pendent of the space dimensionality, the results may
transferred to the two-dimensional case and thus the« ex-
pansion of equal-time correlation functions is consistent
the limit m→0 for 0,«,2 also at two dimensions.

The enstrophy pumping rateB is related to the correlation
function of the random fieldf in the following fashion:

B5
1

2E dk

~2p!2
D~k!. ~39!

The enstrophy pumping is required to be concentrated
small wave numbers. For the IR-regularized correlation fu
tion ~10! this corresponds tol,21 («.3), and in the
class of powerlike functions~when m50) this corresponds
to the limit l→21 («→3). The inverse stirring length (kI

or kI
b) is the lower wave-number cutoffm for both separated

sinks and separated sources, whereas the upper cutoff i
inverse dissipative lengthkB5B 1/6n0

21/2.
It
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Keeping again only the leading-order term of the« ex-
pansion of the coefficient of the fractional power functio
which emerges in the calculation of the integral~39! using
the correlation function~10!, I arrive at the following rela-
tion between the enstrophy pumping rateB and the coupling
constantg0 :

B5
g0n0

3

24p
kB

2~32«!@11O~«!#1
a0n0

3

24p
kB

6 . ~40!

The relevant dimensional parameter in the enstrophy rang
the enstrophy pumping rateB, therefore dimensionless pa
rameters in the asymptotic expression~34! should be chosen
such that all other dimensional parameters are excluded f
the energy spectrum.

From Eq.~40! it follows that the choice«53, a050 ren-
ders the prefactor in the spectrum~34! independent of the
microscale viscosityn0 . It is a remarkable feature of th
asymptotic spectrum~34! that in the limit«→3 the power-
function argument of the scaling function

S kb

k D 222«/3

5
g
*
1/3j0

g0
1/3n0

k2212«/3→
g
*
1/3j0

g0
1/3n0

becomes independent of the wave numberk.
Physically, this means that both microscale viscosity a

drag contribute the same order of magnitude to the total
sipation in the enstrophy cascade, which again is quite un
pected from the point of view of the unrenormalized vortic
equation in the case of separated sinks. Moreover, in the
of separated sources the lower cutoff for the energy iner
range iskj5E21/2j0

3/2 @the borderline wave numberkb ~28!
becomes meaningless for«53] and serves as a natural up
per cutoff for the enstrophy inertial range, if a sink is a
sumed to exist. In this case, however, for the very existe
of the enstrophy inertial range it would be necessary to
quire thatj0.0, which would rule out a spectrum with onl
one dimensional parameterB. On the other hand, when bot
inertial ranges coexist, the natural borderline wave numbe
k05(B/E)1/2 and the enstrophy inertial range may well ex
in the nondissipative limit.

In the limit k→0 I thus obtain the spectrum

E~k!5g
*
1/3g0

2/3n0
2 k23

8p
RF1,g* ,a* ,

g*
1/3j0

g0
1/3n0

,
m

k G . ~41!

Asymptotic behavior with only one parameter, the enstrop
pumping rateB, may be obtained in the case of separa
sinks by puttingj05m50 in this expression with the rese
vations made above for finite«. In this case Eq.~40! leads to
the following asymptotic expression for the energy spectr
in the enstrophy inertial range:

E~k!521/334/3B 2/3k23. ~42!

This is the asymptotic form predicted from dimensional
guments @10#. The constantC8 in the scaling lawE(k)
5C8B 2/3k23 assumes the valueC8521/334/355.451, which
may be compared with the closure model predictionC8
52.626@10#.
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It should be noted that the spectrum~41! becomes scale
invariant already in the limitm→0 with finite coefficient of
friction j0 . The corresponding leading-order expression

E~k!5
21/334/3B 2/3k23

11~4/3!2/3j0B21/3
~43!

with explicit dependence on the dimensionless combina
j0B21/3.

However, for«>2 there are renormalized composite o
erators with negative scaling dimensions@15,21#, e.g., the
energy dissipation operator¹2c¹2c, whose overall contri-
bution to the asymptotic behavior of the spectrum in the lim
m→0 has not been determined. Therefore, in both cases~42!
and ~43! it remains an open question whether or not t
scaling behavior of the spectrum is determined by the p
actor of the right-hand side of Eq.~41!.

Since the coefficient of frictionj0 acts as a partial IR
cutoff in the model, it seems plausible that the spectrum~41!
with nonvanishing friction is less divergent in the limitm
→0 than the frictionless spectrum. This would then imp
that it is more plausible to arrive at friction-dependent sca
invariant spectrum for«53 @the leading order of which is
given by Eq.~43!# than self-similar spectrum independent
the coefficient of friction.

V. CONCLUSION

In this work I have carried out the renormalization of t
randomly forced vorticity equation with long-range corr
lated random force at two dimensions. It is shown that t
equation, like thed-dimensional Navier-Stokes equation ne
two dimensions, cannot be consistently renormalized
such, but a local term has to be added to the correla
function of the random force to make the model multiplic
tively renormalizable. Renormalization-group analysis of
asymptotic steady state of the modified model is carried
at the one-loop order for two different patterns of energy a
enstrophy pumping.

When the energy pumping takes place at large wave n
bers and enstrophy pumping at small wave numbers, b
dissipative terms may be of the same order of magnitud
some intermediate wave-number scale, which serves as
lower cutoff in the energy inertial range and as the up
cutoff in the enstrophy range. The microscale viscosity is
dominant factor of dissipation in the inverse energy casca
Thus, the asymptotic scaling behavior may be described
the stochastic vorticity equation without drag, which leads
the same Kolmogorov spectrum as in three dimensions~37!
with the Kolmogorov constantC524/331/3.

The solution exhibits self-similar enstrophy inertial ran
either when the coefficient of friction is finite or when bo
inertial ranges coexist in the nondissipative limit. Therefo
the energy spectrum, apart from the enstrophy pumping
suggested by dimensional arguments, depends also on
coefficient of drag~but not viscosity!, when the inertial in-
tervals are separated by an energy and enstrophy sink. M
over, in the renormalized model with finite dissipation t
contribution to the enstrophy dissipation of both microsc
viscosity and macroscale drag are of the same order of m
nitude in the enstrophy cascade, contrary to the domin
n
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role of the drag dissipation in the unrenormalized solutio
At the leading order of the« expansion for«53 the spec-
trum is a pure power function of the wave number~43!, but
the coefficient depends on both the enstrophy pumping
B and coefficient of frictionj0 .

When both energy and enstrophy pumping take place
the same wave-number scale, dissipation due to micros
viscosity dominates over dissipation due to friction in t
inverse energy cascade also in this case. Therefore, q
unexpectedly, the asymptotic self-similar behavior in the
ergy inertial range is described by the stochastic vortic
equation without friction for both patterns of pumping. Th
enstrophy inertial range may well exist also for vanishi
friction in this case. In the nondissipative limit th
renormalization-group equations then seem to predict s
similar behavior with the energy spectrum~42!, which is in
accord with the prediction@10# based on dimensional argu
ments.

APPENDIX: CALCULATION OF THE
RENORMALIZATION CONSTANTS

The bare propagators corresponding to the action~11!
with the Pauli-Villars regularization in the time-wave-vect
representation are

Dcc8~ t,k!5u~ t !
e2[nk21j0] t

k2
,

Dcc~ t,k!5
gn3M2«~k21m2!2«1an3L2~L21k2!21

2~nk21j0!

3e2[nk21j0] utu,

whereu(t) is the step function. The renormalization consta
Z1 is found from the requirement that the renormalized 1
Green function

Gc8c8R~v,k!5gn3M2«
k4

~k21m2!«
1an3Z1

k4L2

k21L2

1Sc8c8~v,k! ~A1!

is finite, when«→0 andL→`. In order to distinguish be-
tween the terms with short-range and long-range corr
tions, the inverse correlation lengthm must be set equal to
zero before the calculation of the renormalization consta
This does not cause problems in the« expansion, but re-
quires separate analysis for finite«. The self-energy term
Sc8c8 at the one-loop order is given by the integral

Sc8c8
~1!

~ t,k!5 1
2 ~e ine i 8n8kmkikm8ki 81e ine i 8m8kmkikn8ki 8

1e ime i 8n8knkikm8ki 81e ime i 8m8knkikn8ki 8!

3E dq

~2p!2
~k2q!m~k2q!m8qnqn8

3Dcc~ t,k2q!Dcc~ t,q!. ~A2!
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According to Eq.~A1!, the renormalization constantZ1 is
found from the representation

E dtSc8c8
~1!

~ t,k!52an3~Z121!k41o~k4!

in the limit «→0 andL→`. Differentiation with respect to
m in Eq. ~A2! leads to UV convergent integral, which mea
thatZ1 is independent ofm at one-loop level. This is actually
the case in the MS scheme to all orders@18#. Thus, the cal-
r.

z.
culation of the renormalization constants may be simplifi
by choosingm50.

Similarly, differentiation of the integral~A2! yields UV
convergent integral, therefore I may putk50 in it for the
calculation of the renormalization constants. Note that
powerk4 is already factorized in Eq.~A2!. The integral with
vanishing external wave vector may be expressed as a su
products of Kronecker symbols with scalar coefficien
When the contractions of indices are carried out, these c
ficients are expressed in terms of scalar integrals. As a re
the expression
art, it
Sc8c8
~1!

~ t,k!5
k4

4 E dq

~2p!2

q4e22[nq21j0] utu

4~nq21j0!2 F ~gn3M2«!2q24«12gn3M2«an3q22«
L2

q21L2
1~an3!2

L4

~q21L2!2G ~A3!

follows. The ‘‘mass’’ parameterm has been set equal to zero here to simplify the calculation. To extract the divergent p
is sufficient to calculate the self-energy at zero frequency, which amounts to integration of Eq.~A3! over the time variable.
Calculation of the resulting integrals over the wave vectorq is straightforward and leads to the result

Sc8c8
~1!

~v50,k→0!

5
k4

16~2p!2n3H ~gn3M2«!2
pG~2«!G~322«!

2~j0 /n!2«
12gn3M2«an3L2

pG~211«!G~32«!

2~22«!

3F2
~j0 /n!22«2L2~22«!

~j0 /n2L2!3
22

~22«!~j0 /n!12«

~j0 /n2L2!2
1~22«!~12«!

~j0 /n!2«

j0 /n2L2G2~an3!2L4p

3F3
~j0 /n!2ln~j0 /n!2L4ln L2

~j0 /n2L2!4
2

4~j0 /n!ln~j0 /n!12L2ln L212~j0 /n!21L2

~j0 /n2L2!3
1

ln~j0 /n!13/2

~j0 /n2L2!2 G J .

The renormalization constantZ1 is obtained from the leading singular terms of this expression in the limit«→0 and L
→`. The result depends on the order of passing to the limit and yields the first expression in Eq.~14!. The calculation of the
renormalization constant from the self-energy termScc8 is similar, but no ambiguity in the limit«→0 andL→` arises there.
,
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