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Asymptotic behavior of the solution of the two-dimensional stochastic vorticity equation
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Asymptotic properties of the solution of the vorticity equation for two-dimensional randomly stirred fluid
with long-range correlations of the driving force are analyzed with the aid of field-theoretic renormalization
group methods. Renormalization due to the force fluctuations is shown to lead to drastic changes in the relative
contribution of microscale viscosity and macroscale friction to the energy and enstrophy dissipation.
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[. INTRODUCTION on scales in between the inverse energy cascade and the en-
strophy cascade. In the atmospheric turbulefg&lethe en-
Since the late 1970s renormalization-group methods havergy and enstrophy sources are at the outer edges of the
been widely applied to the investigation of fully developedscaling intervals, and it is not clear whether there is an en-
three-dimensional turbulen¢&—3]. In this approach the sto- €rgy and enstrophy sink between th¢@] or they coexist
chastically forced Navier-Stokes equation has been used witf?]. In both cases the Kolmogorov spectrum of the inverse
powerlike falloff in the space of the correlations of the ran-energy cascad&(k)=k~ 52 for k<k, is observed experi-
dom forcing. Scaling exponents and amplitude coefficientgnentally and in the simulatiorigvith the exceptiorj12]) for
describing the asymptotic behavior of various physical quanwave numbers smaller than the inverse length scale of the
tities have been calculated in anexpansion(see, e.g., the energy pumping,«1/,. However, in the numerical simu-
recent review/4]). The expansion parameter=2— \ is the  lations[9] in the enstrophy inertial range>k; the falloff of
deviation of the power of wave numbgrin the correlation  the energy spectrum seems to be steeper ok 3,
function of the random force from the critical valig=2, at ~ predicted by dimensional argumert].
which the coupling constant of the corresponding field From the technical point of view it is not possible to use
theory is dimensionless. the renormalizedi-dimensional model at two dimensions by
In these calculations the value of the expansion parametgimply puttingd=2 in the resultg§2]. The reason is that in
& has been chosen such that the only dimensional parametghe two-dimensional case there is an additional class of di-
of the model are the viscosity and the energy pumping ratevergent graphs, which have to be included in the renormal-
From the renormalization-group equations it then followsization procedure. The account of the contribution of these
that the asymptotic behavior of the model at large spatiaflivergent graphs has led to significant confusjéri3,14.
scales is independent of the viscosity, and the powerlikén particular, an incorrect renormalization of the two-
wave-number dependence of the equal-time velocity-velocitglimensional stochastic vorticity equation has led to false
correlation function is exactly that predicted by the Kolmog-conclusions about the asymptotic behavior of the solution of
orov scaling law[5]. Therefore, the renormalization-group this equatior{6].
approach yields a mean-field description of turbulence with The source of this confusion can be explained as follows.
built-in Kolmogorov scaling, in which the expansion may The correlation function of the random force, which is usu-
be constructed, e.g., for the structure functions. ally used in the description of turbulence, in the wave-
In the renormalization-group approach most work hagwumber space isk?~9(k?+m?) ~® [1,15], wherem is the
been carried out in three dimensions. Only recently this apsmall wave-number cutoff. For the expansion the cutoff
proach has been applied to the analysis of two-dimensionglarameter may be, and often has been, chosei®. How-
turbulencel6,7]. There are both physical and technical rea-ever, for finitee a careful analysis of the limih—0 in this
sons for this. In two-dimensional turbulence at the scales oéxpansion is required. For arbitrary reland e, k*~9(k?
the stirring length coherent vortex structures are created+ m?) ¢ is a singular function ok? at the origin in the limit
which inhibit formation of self-similar structures. However, m—0, which corresponds to long-range correlated random
experimental data on atmospheric turbulef@g and recent force. At two dimensions the correlation function is renor-
numerical simulationg9] indicate that in two-dimensional malized by countertermsck?, which correspond to local
turbulence there may occur two scaling regimes correspondorrelations in the coordinate space. The renormalization is
ing to the inverse energy cascade towards small wave nuntarried out in the logarithmic model, in whigh=0. In two
bers and the enstrophy cascade towards large wave numbedimensions the original correlation function cannot be distin-
The existence of these two scaling regimes is in accorguished from the local counterterm?, and it is not obvi-
with the prediction of Kraichnafl0]. It should be noted, ous how the model should be renormalized. In particular, to
however, that the energienstrophy pumping leading to a prescribe the local in space counterterms to renormalization
steady state with the two scaling regimes may be realized iof the nonlocal(in the limit m—0) correlation function
two different ways. In numerical simulatioi8] and some [6,13] is not a consistent way to renormalize the model.
experimentg11] the energyenstrophy pumping takes place Recently, a renormalization procedure has been put for-
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ward [16], in which the renormalization of the correlation (Fi(t KO fi(t k’))=P--5(k+k’)5(t—t’)5(k). )
function of the random force has been carried out in a con- nemR !

sistent manner fod-dimensional turbulence near two dimen- Here,

sions. In the present two-dimensional case the argument is

the following. In order to deal with finite quantities, the _ k4-d
model must be regularized. To this end the analytic regular- D(k)zgovgm,
ization with the parameter must be used, otherwise there is (k*+m®)
no way to distinguish between the original correlation func-
tion «k? 2¢(14+m?/k? ¢ and the local countertermsk?.
The renormalization is most conveniently carried out by
multiplicative renormalization. In order to make the model
multiplicatively renormalizable the local termk? is added

()

and\ is an arbitrary parameter.

The force correlation function is related to two basic
physical quantities, the energy pumping r&end the en-
strophy pumping raté8 as

to the force correlation function at the outset. Only this term d—1 dk d—1 dk -

is then renormalized, whereas the nonlocal term is left intact, &= —— D(k), B=—— kD (k)
contrary to the earlier treatment of thledimensional model 2 J 2m 2 )¢

near two dimensiongs,13,14. (4)

In the present paper this renormalization procedure is ap- . . : . .
plied to the solution of the two-dimensional stochastic vor-" d dlmt?’nsmng, which aIIovv_s one to _connect the coup!lng
ticity equation. The stochastic problem and the subsequer?tonStant Yo W.'th the pumping rate in the corresponding
field theory are used in the form specific of two—dimensionalasymptonc region. . . .
turbulence, i.e., the starting point is the stochastic vorticity The correlation functior(3) '25 chosen to be locally m_te-
equation for the stream functio#r instead of the Navier- grable (due to the IR cutoffm®) and to have a powerlike

Stokes equation for the two-dimensional solenoidal velocit)F""Off characterized by the exponeht In t_he wave-vector
field v=(&,X V) . space. The large wave-number behavior is essential for con-

The paper is organized as follows. In Sec. Il the correcﬁ';’t?:rt fﬁﬂ)or??r:ze:ﬂ?;é_gz?éﬁzi);g? tsr’;'j"’.ltl.l é\(l\]’f\@ﬁg:ﬁzr be-
renormalization of the field theory corresponding to the sto- Vi W ' ' tOR.

chastic vorticity equation is carried out and the renormalizapartICUIar function(3) is used, an additional UV cutoff is

tion constants calculated at one-loop order. In Sec. lll the(e?uwe? tfhor f|a|r|‘gfi enough tvglt:es C.)f the r(]extp;]onktﬂtThe
renormalization-group equations are set up and fixed point alué ot the fallolt exponent determinés whetner the energy

found. In Sec. IV the asymptotic energy spectrum is calcu-enStrOphy pumping is concentrated at large or small wave

lated for the energy and enstrophy inertial ranges. Section \l;)umbers. The “physical” value of the falloff exponent is

is devoted to a discussion and concluding remarks. Details oqetermmed by the condition that the energgnstrophy

the calculation of the renormalization constants are presenteWeCtrum m_the inertial range is independent of the cutoff
in the Appendix. parameters in the wave-vector space.

In the two-dimensional case it is customary to express the
velocity field using the stream functiofr defined by the
relationv; = €;;d;4, wheree; is the second-rank antisym-
metric tensor with the usual normalizatian,=1. In two

Consider the stochastic Navier-Stokes equation for thelimensions the vorticityv=V XV is related to the stream
flow of homogeneous incompressible fluid, which for thefunction asw= e€;jdiv;= — V2.
transverse components of the velocity field assumes the form Two-dimensional curl of the Navier-Stokes equatidn

yields the vorticity equation. When the velocity is expressed
dwi+ Pijuidv;=voVvi—éi+fi, dvi=0. (1)  in terms of the stream function the vorticity equation as-

. : sumes the form
Herev;(t,x) are the coordinates of the divergenceless veloc-

ity field, v is the kinematic viscosityg, is the coefficient of NV 2+ 3,00 €mnnbdi ) = voVp—EV 2+ T, (5)
friction, and P;; is the transverse projection operatd?;(
= &;j—kik; /k? in the wave-number spageand f; are the ~wheref=—¢;d;f;. The correlation function of the random
coordinates of the random force. Here and henceforth, sunforce here is
mation over repeated indices is implied. The drag term is
added to the Navier-Stokes equation because in experimental (F(t k) f(t" k")) =d(k+k")8(t—t")D(k), (6)
realizations and simulations of a two-dimensional turbulent
flow energy is consumed not only by microscale dissipation'VNere
but also by the friction at the boundaries of the fluid layer. 4
The drag force makes it possible to maintain a stationary D(K)=gord
state with the anticipated inverse energy cascade towards 0
small wave numbers and the enstroplsguared vorticity
cascade towards large wave numbers. It should be noted that th@onstochasticvorticity equation

In the applications of the stochastic Navier-Stokes equaf5) is Galilei invariant, whereas the two-dimensional Navier-
tion (1) to turbulence the random force is assumed to have &tokes equation with the drag teid) is not.
Gaussian distribution with zero mean and the correlation The stochastic probleid), (6) may be casfl1,2] in a field
function in the wave-vector spa¢é&—3| of the form theory with the “action”

II. RENORMALIZATION OF THE SOLUTION
OF THE STOCHASTIC VORTICITY EQUATION

()

(k2+m2)27)\’
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S=3y'Dy’ + ' derivatives at the interaction vertex: in the graphslgf,
cubic polynomials in the coordinates of the wave-vedtor
X[ =0, V2P+ oV h— 0 Om( €mndnthdi th) — €V 2] factorize, therefore the counterterms ark’.
(8) Divergent terms are polynomial functions of the wave

numbers in the regularized modéi8]. However, in the bare
Here, all the necessary integrals and sums are implied. It iSreen functionl",r,o(w,k) = gorgk*(k?+m?)* 2 there is
convenient to assign canonical scaling dimensions to the paro such term to be renormalized by the divergent contribu-
rameters of the actiol8) separately with respect to wave tions of I, ,» . The reason is that in order to keep track of
number @) and frequencyd®) variables with the conven-  the long-range correlation function an analytic regularization
tion df=—df=1, d®=—d?=1. The total dimension of a must be used, e.g., with the parameter2—\, which is
parametelP is defined aglp=d¥+2d3. The canonical di- used here. Note that the difference between long-range and
mensions are determined from the condition that the actioshort-range correlations of the random field is meaningful
(8) is scale invariant with respect to spatial coordinates ananly in the limit of vanishing inverse correlation length

time separately. Thus, —0. To keep the model multiplicatively renormalizable, a
. regularek* term must be added to the correlation function at
dy,=-2,dy=1, d,=0; the outset. Hence, in the correlation functit® the term

’ D (k) =gorak*(k?*+m?)*~2 is replaced by the sum
d, =2 d%=-1, d,=0;
4

—ag.3 314
d =-2 d2=1, d,=0; ) D)=80v0 17 2z x 2ovak (10
df =0, dg =1, d;=2; with a new parametea,.
0 0 ° The divergences df ;, , give rise to the renormalization
dlg< =4-2\, d2 =0, d90=4—2)\. of the parameteaovg, whereas the parametggvg remains
0 0

unchanged. The canonical scaling dimensions of the param-

k _ qo _ _ ;
The theory is logarithmic, i.ed, =0, when =2. eteray ared, =d, =d, =0. As a result, the renormalized

Power counting in the graphs shows that the logarithmi@ction may be written as
model is renormalizable in spite of the vanishing scaling So=L1g3M26V 2y (— V24 m2)\ 2y 2y
dimensions of the fields. Due to the definition of the stream R= 29V v ) v

function, there are enough factorizing external wave vectors +3Z,av®V2y' V2 + ¢ [ — 0, V2h+Z, vV
at the interaction vertex to keep the model renormalizable: a )
linear wave vector for eacly argument and a quadratic in — 0im( €mndndih) — EoV Y], 1D

the wave-vector coordinates term for eagh argument of
one-particle-irreduciblé1Pl) Green functions. Due to this,
when the model is logarithmic\(=2), the real degree of

whereM is the renormalization mass, and the renormalized
parameters are defined by

divergence of a 1Pl Green function i8'=4—n—2n’, vo=2,,

wheren andn’ are the numbers of thg and ¢’ arguments,

respectively. ag=az,= 3212,73 ,
As a consequence of the Galilei invariance of the action

(8), the 1PI Green functiod,,, , which is superficially Jo=M?gZ,.

divergent by power counting, is actually convergent, as in
the Navier-Stokes problefi,17]. Therefore, only the graphs As usual, the renormalized coupling constagtand a are
of the 1PI Green function§ ,,, andI',,,, yield divergent chosen to be both spatially and temporally dimensionless.
contributions to the renormalization of the model. The nonlocal term of the actiofll) is not renormalized,

It should be borne in mind that the renormalization istherefore the renormalization constaétsandZ, are related
dealing with the UV divergences of the model. The renor-as
malized model exhibits scale-invariant behavior in the limit 3
governed by a stable fixed point of the renormalization Zg=2,", (12
group. In the present case there is an IR stable fixed point,

which yields the self-similar behavior of the model in the YP o a finite renormalization. In the minimal subtraction
limit of small wave numbers. schemd 18] used here, the relatiof12) holds as it stands.

If the resulting renormalized model is finite in the limit . In _the minimal subiraction scheme OU'Y t_he singular con-
m—0, then the self-similar behavior of the model is given bytr|bu_t|ons of the graphs to the ren_orrr_]ahzatlon constants are
the solution of the renormalization-group equations. This iJetained. In general, the renormalization constants are deter-

always the case ia expansion. For finite additional analy- mined up to a finite renormalization, which may be used to
sis of the limitm—0 is required, which is not simple. De- relate the parameters of the model to observables at some

tailed discussion of these problems is deferred to Sec. IV. reference scale. Here, a natural choice would be
The divergences brought about by, may be absorbed 1 o
in the renormalization of the parameteg. The coefficient w L

- : . . 52 2 Wyr(@ K)|[@=M2r=—y,, (13
of friction &, is not renormalized at all due to the factorizing 24 g4 IR | k=M °
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where WWR_ is the renormalized _complet_édresse_ti re- Bg:TDMg:g(_ZS_ %), (16)

sponse function of the stream function, amnglis the viscos-

ity at the reference wave numbkt. The normalizatior(13)

implies that at wave numbers of the order\bfthe nonlinear

terms are negligible. and
The choice of renormalization scheme does not affect the

scaling exponents, but it may change the scaling functions. Du=Madplo,

However, in thee expansion any renormalization prescrip-

tion different from the minimal subtraction scheme changes Du=Mady, 17

the coefficient and scaling functions by terms that are of

higher than the leading order in the expansion. In the D,=vd,.

present work the correlation functions and spectra are calcu-

lated at the leading order of the expansion, which is In Dy the partial derivative with respect #d is calculated

uniquely given by the minimal subtraction procedure. with fixed bare parametefsubscript 0), whereas i, the
Due to the addition of the parametarthe regularization renormalized parametefwithout subscriptare kept fixed.

prescription had to be changed. Practically the most conve- The relation(12) together with the definition§l7) leads

nient way to introduce an ultraviolet cutoff turned out to be ato the connectiohl]

kind of Pauli-Villars regularization by the substitution

Ba= T)Ma: —QaYa,

Yg= —37,- (18
2
ar3kt—ar3k? L It is convenient to extract the functioR of dimensionless
Atk argumentsa, g, and
This implies that the renormalized model is obtained as the Kk & m
double limit of the regularized model, when—0 and A s=—|nm, z= VR X
14

—oo. The result depends on the order of passing to the limit,
but this ambiguity is no more dangerous than that related t? th lation functiofVst .-
finite renormalization, and thus does not affect the'TOM € correiation iunctionyy, g

asymptotic behavior of the model. t
For the divergent parts of the renormalization constants at W?”*”R(k’g’a’ v:60,m,M)

the one-loop level | obtain =1gv’M?*k 27 2*R(e"S,g,a,z,u). (19

E Substitution of this representation in the basic equatid)

1 5 ' 5 leads to the following Callan-Symanzik equation for the
7,1 9 g A2 |+amn—1}, function R:
64| 2ea 2] M2 B
M ?2 [ds—(2— 7v)Dz+ﬁgag+IBa‘9a+ y.JR(e"%,9,a,z,u)=0.

(14 The solution of this first-order partial differential equation
may be written in the form

R(e™S,g,a,z,u)=e 2/n%R(1g,a,z,u), (20)

Here, the upper expression fé§ corresponds to the limit in
which first A— o and thens —0, and the lower expression
to the reversed order of passing to the limits. 2dg ada

0By > JaBa

whereg, a are the solutions of the equations

—s, (21

IIl. RENORMALIZATION-GROUP EQUATIONS
AND FIXED POINTS and

From the connection between the renormalized and un- _ S g
renormalized equal-time autocorrelation functions of the z=z€/dZ n)do, (22

stream functio
W Due to the connectiofil8) the exponential scaling factors in

Wf,},t(/,R(g,a,V,M)Z\A/fpt¢(go,ao,vo) Eqs.(?O) and(22) may be expressed in terms of the running
coupling constants, g [15], and
the usual basic renormalization-group equation follows:
W5,r(K,0,8,7,&,MmM)

Dy + + —v,D, WS = 1
[ M ﬁg(?g 183(93 & V] IR 0 (5) :%E./392/3V2k—(2+48/3)M48/3R
where ke s
~ ) % b 9 .
¥i=DwiInzZ;, i=aqg,v, 1g.a,2 M) (g ul. (23
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It is convenient to rewrite this relation in terms of the un- at which both dissipative terms in the renormalized solution

renormalizedphysica) parameters: of the vorticity equation are of the same order of magnitude.
In the former limit dissipation due to drag is small, in the
\/\/f,wa(k,g,a,v,go,m,M) latter dissipation due to microscale viscosity is small.
1.1/3,2/3, 2|, — P 51/350 —(2—
— 1g1Bg23, 2K~ (2+aelBR 1'9"""91/31} K—(2=2¢13) | IV. ASYMPTOTIC ENERGY SPECTRUM
o %o

From the solution(24) the asymptotic expression
(24)

WS r(k,g,a,v,&,m,M
One-loop calculation yields the following expressions for the wr(K.Q fo )

functions(16): 2~ 2013

g 1 =398 ik #**PR 19, a, ?) ol 29

Bg=9'(—2e+3a’+3g’), (25
P " follows, whenk—0. Here,g, , a, are the values of the
Ba=—9'°+g'a’'+2a’", coupling constantg, a at the infrared-stable fixed point
(26), respectively.
where The energy pumping raté is related to the correlation
a g function of the random field in the following fashion:
a'==——, g ==—.
These B functions are exactly the same as those of the 2} (2m)? K? '

d-dimensional Navier-Stokes equation at two dimensions

[16]. Thus, it seems that from the point of view of the renor-For the correlation functioril0) of the properly renormal-

malization group, the results of tledimensional model in  ized model it can readily be seen that for0 (e<2), the

the two-parameter expansifh6] may be applied directly to energy pumping corresponding to the first term is concen-

the two-dimensional case. trated at large wave numbers, as required for the assumed
The fixed points are determined by the system of equasteady inverse energy cascade. The energy pumping due to

tions B4=B,=0. From the solution of the equatiori1) the second term is always concentrated at large wave num-

near a fixed point it follows that the fixed point is infrared bers. In contrast with the three-dimensional case, the inverse

stable, when the matriw, = .8y, is positively definite at  stirring lengthk, serves as the upper cutoff for the inverse

the fixed point. The trivial fixed poirg. =a. =0 is infrared ~ €nergy cascade. The choice of the lower cutofis different

stable only ife<0. For >0, the trivial fixed point is a for the anticipated two scaling patterns.
saddle point of the solution of E¢21). When both the energy source and the enstrophy source
The anomalous asymptotic behavior of the model at smafre in the middle of the wave-number interval, as in most

wave numbers is governed by the nontrivial fixed point ~ humerical simulations, dissipation scales are necessarily
widely separated. The drag is responsible for the energy dis-

r=4 a =2 (26)  sipation at low wave numbers and the microscale viscosity
g* 9¢&, * 9€ . . .
for the enstrophy dissipation at high wave numbers. On the
at which the eigenvalues of the stability matrix are other hand, when the sources are separated in the wave-
number scale, as in atmospheric turbulence, dissipation due
w1 = 2(2+i 2)e. (27) to both mechanisms is possible at wave numbers in between.

Therefore, when the energy source is at the upper end of

The real parts of both eigenvalues are positive, wherD the wave-number intervakf) and the enstrophy source at
and this inequality determines the region of stability of thisthe lower end kP), | choose the borderline wave number
fixed point. Since the eigenvalues of thematrix are com- Ky, =(0« £31gov3) Y622 as the lower cutofim for the en-
plex conjugate, the fixed point is an infrared-stable focusergy inertial rangéand as the upper cutoff for the enstrophy
The anomalous dimensioyf is related to the parameterin ~ inertial rangg. The self-similar enstrophy cascade is ex-
the usual mannd,2] y* =2¢/3. pected to take place fd{lb< k<k, and the inverse energy
In the basin of attraction of an infrared-stable fixed pointcascade fok,<k<k{'.
the running coupling constants approach the fixed-point val- When the pumping of energy and enstrophy takes place in
uesg—g,, a—a, in the large-scale limit, whes— . the middle of the wave-number intervak] the natural
However, the parameter grows in this limit, as seen from Cchoice for the upper cutoff of the enstrophy inertial range Is
Eq. (22), and there are two separate asymptotic limits correfhe wave number of microscale dissipatiap=5"v,
sponding to wave-number scales much greater or muchgnd for the lower cutoff of the energy inertial range the wave

smaller than the borderline wave number number of drag dissipatiok;= £ ~ 232,
The parameterg,, ag of the model may be related to the
&g, 1(6-2¢) energy pumping rat€ in a manner similar to that used in the
k,= = , &%3, (28 three-dimensional ca$é&5]. For the correlation functiofil0)
v Yo | obtain from Eq.(30) the relation
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be established. To this end, the expressgi&R) is substituted

3 3 2\ 2-¢

apgv v 1 m

E= % 4+%A2(2*8)2T <1+ —2) for gov3 in Eq. (35). When the choice,=0 and the defini-
4 T ¢ A tion k,=& 232 are taken into account, it follows from
P o\ 1-s 2\ 2—¢ Egs. (32 and (35) that k,= (g, /16m)Y%,. Thus, both pa-
em m 1 m . 5

— - 1+ — + — , (3D rameters are proportional Eﬁ . Therefore, the completely

1-eA A 1-elA scale-invariant energy spectrum may be obtained by putting

. £0,=0 also in the case of separated sinks.

whereA is th? upper cutoff parameter. ) Physically, the fact that=k.xky, leads to the somewhat

The coupling constang, as a function of the energy neypected conclusion that dissipation due to microscale vis-
pumping rate and cutoff parameters is substituted from the ity is the dominant factor in dissipation in tieverse
relation (31) in the asymptotic expressiof29). The expo-  gnergy cascade; at the lower end of the energy inertial range
nents in the power functions in E9) are exact in the  gisgipation due to microscale viscosity is of the same order
expansion, but the expansion of the scaling functidR is ot magnitude as dissipation due to drag. This effect is
not simple. The one-loop calculation of the renormalization—brought about by the renormalization, for in the unrenormal-

group functions performed here allows one to find the scalj;¢q yorticity equation both dissipative terms are of the same
ing function at the leading order in theexpansion. There- ,qer of magnitude at wave numbers of the order
fore, only the leading order term of the coefficient of the

power functionA2(?~#) in Eq. (31) may be consistently used
when substitutingyy from Eq. (31) in Eq. (29). At this ac- Kop=
curacy the relation betweehandgg is

1/2

3
%) =Re"%k,, (36)

govg aovg since the Reynolds number of the energy inertial range Re
E= EAZ(Z*S)[lJr O(e)]+ EM' (32)  =E&l&w, is large in the asymptotic regime.

Thus, the choice&;=0 renders the spectruri34) com-
E)_Ietely scale invariant with the Kolmogorov exponenis:

On the other hand, the connection between the stream fun¢-=>"- 2~ - ’
£, The coefficient may be calculated in theex-

tion autocorrelation function and the energy spectitfk),

defined by the relatiofv2(x)) =2/ ZE(k)dk, is pansion. At the leading order the spectrum
k3 E( k) — 24/331/352/3k75/3 (37)
E(k)= Evvj,‘w(k). (33

follows, in which the only parameter is the energy pumping
rate £. The Kolmogorov constanC in the scaling law
E(k)=CE&?*% 53 is obtained in the leading order of the
kp\ 2723 m expansion from Eq(37) asC=2%333=3.634. This is less

) Kl than the closure model predicti@ 6.69[10]. Most results

(34) of numerical simulations, which vary frol@=2.9[19] to
C~14[20], also exceed the value obtained here. Experimen-

The right-hand side of Eq:34) depends on several param- tal results[11] yield the range 3 C<7.
eters, the values of which may be chosen to yield the ex- The asymptotic behavior
pected universal scaling behavior in the inertial range. The
spectrum(34) should be independent of the details of the E(k)=2(3g) Y323t~ 4e3 e 23
energy pumping, i.e., independent of the upper cutofin
the intervalm<k<A. According to the relatior(32), this  resulting from Eq(34) for ag=0, £,=0, is well justified in
goal is achieved by the choicg,=0 ande=2, as in the thee expansion, in which it is safe to put the coefficient of
three-dimensional case. It should be borne in mind that thériction £,=0 and obtain a scaling regime independengpf
bare coupling constarat, is actually a book-keeping param- with pure power-law dependence on the wave number. The
eter reflecting the necessity of the introduction of the shortreason is that in the framework of perturbation theory, the
range term in the correlation function of the random force. scaling functionR may be constructed in the form of an

The spectrum(34) remains still dependent on the border- expansion at the fixed point of the RG:
line wave numbek, and the small wave number cutoff pa-
rametem. In the case of separated sources k,,, and it is

According to the asymptotic expressi@@g), this yields

1-4¢/3

k
E(k)zgilsgozla”g oy R[l,g*,a*,

k

[

sufficient to putk,=0 to obtain completely scale-invariant R(1.9. .2« ’Z)an—:o e"Ry(2).
energy spectrum. From the definiti¢28) for £ =2 it follows N
that

Inspection of the wave number and frequency integrals giv-

3 1/2 ing rise to this expansion reveals that the coefficidRi&z)
I3 . X ;
ky= 50 9« (35) are only weakly singular functions of the effective small
Vg Y0 wave-number cutoffx &y : they remain finite in the limitz

—0, but contain singular terms of the typén z
Therefore, to puk,=0 is tantamount to putting,=0. For finite e, however, it is not obvious that the self-
In the case of separated sinks the cutoff parameter similar behavior does not depend @p and that the expo-
=k, and the relation of the two parametdrsandk, must nents of the powerlike asymptotics are those of BY),
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because for finitec in the perturbation expansion there are  Keeping again only the leading-order term of theex-
always terms divergent in the limit,— 0. pansion of the coefficient of the fractional power function,
A similar problem arises in the three-dimensional case. lwhich emerges in the calculation of the integ¢a®) using
has been thoroughly analyzed5,21 with the aid of the correlation functio10), | arrive at the following rela-
operator-product expansion. The operator-product expansidion between the enstrophy pumping r&end the coupling
(fusion rule of the producti(ty,x;) #(t,,%,) of renormal-  constantgy:
ized fields is an asymptotic expansion of the form
B dovs
Wt X)) =2 ComnFoe(t) (39 24m
The relevant dimensional parameter in the enstrophy range is
valid in the correlation functions of the model. Herest;  the enstrophy pumping rat8, therefore dimensionless pa-
—t,—0,r=%;—X,—0,t=(t;+1,)/2, andx=(x; +x,)/2. In  rameters in the asymptotic expressi@4) should be chosen
Eq. (38) F,r are scale-invariant linear combinations of such that all other dimensional parameters are excluded from
renormalized composite operators, i.e., polynomial function$h€ energy spectrum.
of the fieldsy and ' and their derivatives. The coefficient ~ From Eq.(40) it follows that the choice =3, a;=0 ren-
functions C,, are finite in the limit ofm—0, therefore the ~ders the prefactor in the spectruf4) independent of the
behavior of the sum in the limin—O0 is determined by the Microscale viscosityv,. It is a remarkable feature of the
scaling behavior of the composite operators. asymptotic spectruni34) that in the limite —3 the power-
Fusion rules such as E(8) have been proved to hold for function argument of the scaling function
relativistic field theoriegsee, e.g., Ref18]), and are gener-
ally assumed to be true also in the case of first-order field (kb)z_zsls_ 9. 0\ ~2+2¢3_, 9i %o

3
_ I
2(3—¢) 6
kG [14+0(e) 1+ 5 k. (40)

theories. It has been shovyt5,21] that asymptotic expres- K _gl/3v g%y
sions obtained in the expansion for three-dimensional sto- oo o "o
chastic Navier-Stokes equatiph,2] are consistent for finite becomes independent of the wave nurmker

0<g<2 in the limitm—0. This analysis involves calcula-  ppysically, this means that both microscale viscosity and
tion of anomalous dimensions of composite field operatorgyag contribute the same order of magnitude to the total dis-
with lowest canonical scaling dimensions with the subsex;naiion in the enstrophy cascade, which again is quite unex-
quent resummation of those of them, which have negativgected from the point of view of the unrenormalized vorticity
total scaling dimensiongl5]. equation in the case of separated sinks. Moreover, in the case

_ This is a formidable task in three dimensions, and in oyt separated sources the lower cutoff for the energy inertial
dimensions it becomes even worse, since the canonical dﬁ':mge isk§:€71/2§g/2 [the borderline wave numbeés, (28)

mensions of the stream function field and the auxiliary

. . ; . becomes meaningless fer=3] and serves as a natural up-
field ' are equal, which leads to proliferation of relevant g ] P

. 6l H in th q per cutoff for the enstrophy inertial range, if a sink is as-
composite operatorsL6]. However, in the operator-product 04 1o exist. In this case, however, for the very existence

expa_nsion of equal-time correlation functions (_Jf the_streanbf the enstrophy inertial range it would be necessary to re-
gjunxciﬁlgrr;/ ﬁiélk:jerz; .a[rehigoc;%mt?eosslteeer?pl;e;iitr?sr;elgr\ilgLVIQ? t:‘eequire that¢o>0, which would rule out a spectrum with only

: . : . one dimensional paramet8r On the other hand, when both
graphs of the perturbation expansion, in which the equali,qia| ranges coexist, the natural borderline wave number is
time correlation functions with the’ field always contain ko= (B/€)Y2 and the enstrophy inertial range may well exist
closed loops of the retardegl’ 4 propagator of the model inothe nondissipative limit.
and thus vanish. Since the analysis of R¢1%,21] is inde- In the limit k—0 | thus obtain the spectrum
pendent of the space dimensionality, the results may be

transferred to the two-dimensional case and thussthex- K3 g Vg m
pansion of equal-time correlation functions is consistent in E(k)=gY%9,%%3——R| 1.9, ,a, ’*l/—30’? . (4D
the limit m— 0 for 0<e<2 also at two dimensions. 8m Jdo Yo

The enstrophy pumping ratgis related to the correlation

function of the random field in the following fashion: Asymptotic behavior with only one parameter, the enstrophy
pumping ratel5, may be obtained in the case of separated

1 dk sinks by puttingéo=m=0 in this expression with the reser-
B= Ef —ZD(k). (399  vations made above for finite In this case Eq(40) leads to
(2m) the following asymptotic expression for the energy spectrum

o ) in the enstrophy inertial range:
The enstrophy pumping is required to be concentrated at

small wave numbers. For the IR-regularized correlation func- E(k)= 2133433233, (42
tion (10) this corresponds ta<—1 (¢>3), and in the

class of powerlike functiongwhenm=0) this corresponds This is the asymptotic form predicted from dimensional ar-
to the limitA— —1 (e—3). The inverse stirring lengttk(  guments[10]. The constantC’ in the scaling lawE(K)

or kP) is the lower wave-number cutoffi for both separated =C’52% 2 assumes the valu@' = 233%3=5.451, which
sinks and separated sources, whereas the upper cutoff is theay be compared with the closure model predictidh
inverse dissipative lengtkz= 5%y, /2. =2.626[10].
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It should be noted that the spectrudil) becomes scale role of the drag dissipation in the unrenormalized solution.
invariant already in the limimn— 0 with finite coefficient of At the leading order of the expansion fore =3 the spec-
friction &,. The corresponding leading-order expression is trum is a pure power function of the wave numi¢48), but

the coefficient depends on both the enstrophy pumping rate

21334133 213~ 3 B and coefficient of frictiong, .

= 1+ (4/3)23,B 15 (43 When both energy and enstrqphy pgmping take place at

the same wave-number scale, dissipation due to microscale
with explicit dependence on the dimensionless combinatio{!SCOSity dominates over dissipation due to friction in the
g8 inverse energy cascade al_so in thls.case. Th.ere_fore, quite

unexpectedly, the asymptotic self-similar behavior in the en-

ergy inertial range is described by the stochastic vorticity
equation without friction for both patterns of pumping. The
enstrophy inertial range may well exist also for vanishing
friction in this case. In the nondissipative limit the
renormalization-group equations then seem to predict self-
similar behavior with the energy spectrud?), which is in
accord with the predictiofl0] based on dimensional argu-

E(k)

However, fore=2 there are renormalized composite op-
erators with negative scaling dimensiofib,21], e.g., the
energy dissipation operat®?yV2y, whose overall contri-
bution to the asymptotic behavior of the spectrum in the limit
m— 0 has not been determined. Therefore, in both ce&®s
and (43) it remains an open question whether or not the
scaling behavior of the spectrum is determined by the pref
actor of the right-hand side of E¢41).

Since the coefficient of frictior¢, acts as a partial IR ments.
cutoff in the model, it seems plausible that the specttdin
with nonvanishing friction is less divergent in the lini APPENDIX: CALCULATION OF THE
—0 than the frictionless spectrum. This would then imply RENORMALIZATION CONSTANTS

that it is more plausible to arrive at friction-dependent scale-
invariant spectrum foe =3 [the leading order of which is
given by Eq.(43)] than self-similar spectrum independent of
the coefficient of friction.

The bare propagators corresponding to the acfibh
with the Pauli-Villars regularization in the time-wave-vector
representation are

e [k + &t
V. CONCLUSION A¢¢'(t,k): (1) % ’
In this work | have carried out the renormalization of the
randomly forced vorticity equation with long-range corre-
lated random force at two dimensions. It is shown that this gr®MZ (kK2 +m?) ~*+arPA?(A%+k?) 1
equation, like thel-dimensional Navier-Stokes equation near Ayy(tk)= 2(vk2+ £o)
two dimensions, cannot be consistently renormalized as 0
such, but a local term has to be added to the correlation x e~ [+ It
function of the random force to make the model multiplica-

tively renormalizable. Renormalization-group analysis of theyhere(t) is the step function. The renormalization constant

asymptotic steady state of the modified model is carried oy s found from the requirement that the renormalized 1PI
at the one-loop order for two different patterns of energy angseen function

enstrophy pumping.

When the energy pumping takes place at large wave num- 4 4n2
. k K*A
bers and enstrophy pumping at small wave numbers, both o (0,K)=gr*M2 —— +a,37, ———
dissipative terms may be of the same order of magnitude at ~ #"#'®*™" (k?>+m?)® Y24 A2

some intermediate wave-number scale, which serves as the

lower cutoff in the energy inertial range and as the upper +3 iy (0,K) (A1)

cutoff in the enstrophy range. The microscale viscosity is the

dominant factor of dissipation in the inverse energy cascadés finite, whens—0 andA—«. In order to distinguish be-

Thus, the asymptotic scaling behavior may be described byween the terms with short-range and long-range correla-

the stochastic vorticity equation without drag, which leads tations, the inverse correlation length must be set equal to

the same Kolmogorov spectrum as in three dimens{8is  zero before the calculation of the renormalization constants.

with the Kolmogorov constar(® = 24333, This does not cause problems in theexpansion, but re-
The solution exhibits self-similar enstrophy inertial rangequires separate analysis for finite The self-energy term

either when the coefficient of friction is finite or when both %, ,, at the one-loop order is given by the integral

inertial ranges coexist in the nondissipative limit. Therefore

the energy spectrum, apart from the enstrophy pumping rate s (1) (

suggested by dimensional arguments, depends also on the v

coefficient of drag(but not viscosity, when the inertial in- + €im€irn KKK/ K7 + €im€irm KnkiKnKir)

tervals are separated by an energy and enstrophy sink. More-

over, in the renormalized model with finite dissipation the q

contribution to the enstrophy dissipation of both microscale Xf (Zw)z(k_Q)m(k_Q)m'qnqn’

viscosity and macroscale drag are of the same order of mag-

nitude in the enstrophy cascade, contrary to the dominant XAy (LK=a)A,(1,0). (A2)

t,k)z %(finfi’n’kmkikm’ki’+ 6in6i'm’kmkikn'ki’
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According to Eq.(Al), the renormalization consta@; is  culation of the renormalization constants may be simplified
found from the representation by choosingm=0.
Similarly, differentiation of the integralA2) yields UV
(1) 3 4 4 convergent integral, therefore | may pkit=0 in it for the
f thWW(t,k):—av (Z1—1Dk*+o(k™) calculation of the renormalization constants. Note that the
powerk? is already factorized in EGA2). The integral with
. o . o . vanishing external wave vector may be expressed as a sum of
in the limit e —0 andA —c. Differentiation with respect to  products of Kronecker symbols with scalar coefficients.
min Eq.(A2) leads to UV convergent integral, which meansWhen the contractions of indices are carried out, these coef-
thatZ, is independent ofn at one-loop level. This is actually ficients are expressed in terms of scalar integrals. As a result,
the case in the MS scheme to all ordgtS]. Thus, the cal- the expression

dg gle2bva*+ &l A? A*
(2 q)z q4( 2+ £9)? LgrﬁMZS)zq48+29v3M2‘9av3q282—”"’“’3)2— A3)
T vq 0 a

+A2 (g2+A?)2
follows. The “mass” parametem has been set equal to zero here to simplify the calculation. To extract the divergent part, it
is sufficient to calculate the self-energy at zero frequency, which amounts to integration @3amver the time variable.
Calculation of the resulting integrals over the wave vectas straightforward and leads to the result

3 k)zk—4f
AN 4

Efﬁl,)¢,(w=0,k—>0)

27TF(—1+8)F(3—8)

k* ml'(2¢)['(3—2¢)
= 3£ 262 30 1 26 3
16(277)2V3[(g M 2(&lv)% F2grMTarA 2(2—¢)
(£/V)? = A2272)  (2—&)(£o/v)" Go/m) ] o,
X{Z (&o/v—A3?)3 2 (£g/v—NA2)2 +t(2-8)(1 8)§0/v—A2 (av’)*A*m

O(fo/v)zln(go/v)—A“ln A? B 4(&oIv)IN(Eglv)+2A2NA2+2( &0l v)%+ A? . In(&q/v)+3/2
T (élv—AYD* (&olv—7A?)® (&o/v—A?)?

X

The renormalization consta@; is obtained from the leading singular terms of this expression in the im0 and A
—o0. The result depends on the order of passing to the limit and yields the first expressionI#)Edhe calculation of the
renormalization constant from the self-energy teif), is similar, but no ambiguity in the limi¢—0 andA — <« arises there.
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